打屁很臭是什么原因| 请人原谅说什么| 大便不成形是什么原因| 相亲为什么不能拖太久| 7.11是什么星座| 囊肿什么意思| 辅酶q10什么时间吃最好| 大口什么字| gravy是什么意思| 左边小腹疼是什么原因| 什么日什么秋| 丙火是什么意思| 血液粘稠吃什么药| 拉屎屁股疼是什么原因| 启明星是什么意思| 什么时候敷面膜效果最好| 脱发缺少什么维生素| 5.20什么星座| 风疹病毒抗体igg阳性是什么意思| 超声介入是什么意思| 钟点房是什么意思| nuxe是什么牌子护肤品| 吃什么提高免疫力最好最快| 梦见大蒜是什么意思| 打了封闭针后要注意什么事项| 成双成对是什么数字| 肝是什么器官| 儿童风寒咳嗽吃什么药| 疮痈是什么意思| 抖s是什么意思| 红黑相间的蛇是什么蛇| pinky是什么意思| 235是什么意思| 送老爸什么礼物| 尿血挂什么科| 贫血吃什么补得快| 什么叫射频消融| 肾与性功能有什么关系| 喜形于色是什么意思| 内裤上有黄色分泌物是什么原因| 再接再厉后面接什么好| 老鼠尿是什么颜色的| pure什么意思| 红细胞偏高有什么危害| 一点是什么时辰| 减肥可以吃什么主食| 霉菌性阴道炎是什么原因引起的| 茶话会是什么意思| 梦见家里发大水了是什么征兆| 孕妇痔疮犯了能用什么药膏| 淋是什么意思| 桑葚泡水喝有什么功效| 功能性子宫出血是什么原因造成的| 打牛是什么意思| 手汗脚汗多是什么原因| 月经来了吃什么好| 坐月子哭了会有什么后遗症| 什么万千| 38节送什么礼物| 做爱是什么感觉| 文化底蕴是什么意思| 流水是什么| 脉紧是什么意思| 四月十六日是什么星座| 团长相当于地方什么官| 济州岛有什么好玩的| 动脉瘤是什么| 拉垮什么意思| 咽喉炎吃什么药有效| 性冷淡是什么意思| kbs是什么意思| 螺旋藻是什么东西| 紫色睡莲的花语是什么| px什么意思| h代表什么单位| 布洛芬起什么作用| 什么是低保户| 总胆固醇高说明什么| 睡眠不好是什么原因引起的| 乳腺增生1类什么意思| 光膀子什么意思| 严重失眠吃什么中成药| 斐乐属于什么档次| 小产吃什么好恢复营养| 戒备心是什么意思| 父母都没有狐臭为什么孩子会有呢| 检查骨头做什么检查| 甘油三酯偏高有什么危害| 胃炎挂什么科| 吃什么可以缓解孕吐恶心| 朝鲜钱币叫什么| 擦是什么意思| 尿茶色尿是什么原因| 什么饼不能吃脑筋急转弯| 右佐匹克隆是什么药| 月经期间洗澡会有什么影响吗| 太傅是什么官| 前列腺钙化是什么原因引起的| 雷猴是什么意思| 向内求什么意思| size是什么意思| 肝内低密度影是什么意思| 省内流量是什么意思| 抗生素药对人体有什么危害| 百忧解是什么药| 幽门杆菌吃什么药最好| 梦到拔牙是什么预兆| 落花雨你飘摇的美丽是什么歌| 一个金字旁一个川读什么| 男人做什么运动能提高性功能| 指导是什么意思| 鼓目念什么| 三角形为什么具有稳定性| 彻底是什么意思| 下午吃什么饭| 血象高是什么意思| 下巴出汗多是什么原因| 毛拉是什么意思| 大疱病是什么病| ms什么意思| 政委是干什么的| 眼白出血是什么原因| 白蛋白偏高是什么意思| 粤语点解什么意思| 激素六项都是查什么| 由是什么意思| beacon什么意思| 晚上睡觉阴部外面为什么会痒| 怀孕什么时候开始孕吐| 异卵双胞胎是什么意思| 雌激素是什么东西| 梦见死尸什么预兆| 屁股黑是什么原因| 羊肚是羊的什么部位| 什么是小数| 茶叶蛋用什么茶叶最好| 健忘是什么意思| 咳嗽呕吐是什么原因| 回肠荡气什么意思| 时令是什么意思| 蚊子会传播什么疾病| 虎配什么生肖最好| 师姐是什么意思| 男士内裤什么材质的好| 抹胸是什么| 脾胃阴虚吃什么中成药| 囊肿是什么意思| 除湿是什么意思| 银镯子变黑是什么原因| 12月21日是什么星座| 自闭是什么意思| 命硬的人有什么特征| 龟头起红点用什么药| cupid什么意思| 水银中毒会出现什么状况| 空腹喝酒有什么危害| 胃镜能检查出什么| 献血前吃什么东西最好| 92年是什么生肖| 隐晦是什么意思| 经常手淫会有什么危害| 突然膝盖疼是什么原因| 似曾相识是什么意思| 高血压看什么科室| ny什么牌子| 驻马店古代叫什么| 花胶有什么功效| 大人有大量是什么意思| 格局是什么| 脾虚湿盛吃什么中药| 社保卡是干什么用的| 睚眦什么意思| 反射弧是什么意思| 什么驴技穷成语| 身上长红痘痘是什么原因| 1990年属马是什么命| 中暑了吃什么好| 梦到下雪是什么征兆| 汗毛长是什么原因| 月经不调有什么危害| 被和谐了是什么意思| 机关党委是干什么的| 知了为什么叫| 手容易出汗是什么原因| 滑胎是什么意思| 喝茶有什么坏处| 力什么神什么| 证监会是干什么的| 眼睛有眼屎用什么眼药水| 父母坟上长树意味什么| 热惊厥病发是什么症状| 什么人不能吃香蕉| 尿道痛什么原因| 经常嗳气是什么原因| 饽饽是什么意思| 胃寒吃什么可以暖胃| 肾虚吃什么药| 女方什么人不能送亲| 轻度抑郁症吃什么药| 身上发热是什么原因| 34属什么| 姨妈没来是什么原因| 龙骨是什么骨头| 没吃多少东西但肚子很胀是什么| 气血不足什么原因引起的| 胃上面是什么器官| 小肚子左边疼是什么原因| 莘莘学子什么意思| 乳腺囊性结节是什么意思| 吃什么可以让月经快点来| 肝什么相照| 肺结核是什么症状| 皮肤长癣是什么原因引起的| 咸鱼什么意思| 什么网站可以看三级片| 喝什么解暑| 急性肠胃炎什么症状| 喉咙扁桃体发炎吃什么药| erke是什么牌子| 南瓜皮可以吃吗有什么作用| 声讨是什么意思| 细胞由什么组成| 为什么今年有两个6月| 小孩突然抽搐失去意识是什么原因| 月亏念什么| 子宫囊肿是什么原因引起的| 叉烧肉是什么肉| 九月29号是什么星座| 桃花灼灼什么意思| dan什么意思| 尿路感染用什么药| 孕妇吃核桃对胎儿有什么好处| 投诚是什么意思| 层出不穷是什么意思| 病毒性感冒发烧吃什么药| leslie什么意思| 猎奇什么意思| 6月6是什么节日| 丑时是什么命| 直肠指检能检查出什么| 十二生肖各代表什么花| 承上启下是什么意思| 什么是事业编| 月经血是黑色的是什么原因| 耳鸣吃什么药最有效| 吃什么促进消化| 科学解释什么叫上火| via什么意思| 甲状腺应该挂什么科| 变化无穷是什么生肖| 老是流眼泪是什么原因| 中午吃什么不会胖| 婴儿湿疹用什么药膏最有效| 痤疮是什么引起的| 补体c1q偏高说明什么| 瓜蒌根为什么叫天花粉| 事宜愿为是什么意思| 心跳过速吃什么药| 星是什么意思| 为什么晚上不能照镜子| 高压高低压正常是什么原因| 眼胀是什么原因| 什么牌的笔记本电脑好| 吃什么补充黄体酮| 百度 This is the Trace Id: 3a559c17d8297a364dc8b3e61296d8e0
Skip to main content
Azure

何立峰谈发改委机构改革:“瘦身”是手段 “强体”是目的-时事中国-时政频道-中工网

百度 持卡人应当按照公共交通卡发行规则和公共交通行业的相关规定,正确使用公共交通卡。

Learn about the difference between data lakes and data warehouses. Discover how to build a scalable foundation for all your analytics with Azure.

Data lake definition

This introductory guide explores the many benefits and use cases of a data lake. Learn what a data lake is, why it matters, and discover the difference between data lakes and data warehouses. But first, let's define data lake as a term.

A data lake is a centralized repository that ingests and stores large volumes of data in its original form. The data can then be processed and used as a basis for a variety of analytic needs. Due to its open, scalable architecture, a data lake can accommodate all types of data from any source, from structured (database tables, Excel sheets) to semi-structured (XML files, webpages) to unstructured (images, audio files, tweets), all without sacrificing fidelity. The data files are typically stored in staged zones—raw, cleansed, and curated—so that different types of users may use the data in its various forms to meet their needs. Data lakes provide core data consistency across a variety of applications, powering?big data analytics,?machine learning, predictive analytics, and other forms of intelligent action.

Why are data lakes important for businesses?

Today's highly connected, insights-driven world would not be possible without the advent of data lake solutions. That's because organizations rely on comprehensive data lakes platforms, such as Azure Data Lake, to keep raw data consolidated, integrated, secure, and accessible. Scalable storage tools like Azure Data Lake Storage can hold and protect data in one central place, eliminating silos at an optimal cost. This lays the foundation for users to perform a wide variety of workload categories, such as big data processing, SQL queries, text mining, streaming analytics, and machine learning. The data can then be used to feed upstream data visualization and ad-hoc reporting needs. A modern, end-to-end data platform like Azure Synapse Analytics addresses the complete needs of a big data architecture centered around the data lake.

Data lake use cases

With a well-architected solution, the potential for innovation is endless. Here are just a few examples of how organizations across a range of industries use data lake platforms to optimize their growth:

  • Streaming media.?Subscription-based streaming companies collect and process insights on customer behavior, which they may use to improve their recommendation algorithm.

  • Finance.?Investment firms use the most up-to-date market data, which is collected and stored in real time, to efficiently manage portfolio risks.

  • Healthcare.?Healthcare organizations rely on big data to improve the quality of care for patients. Hospitals use vast amounts of historical data to streamline patient pathways, resulting in better outcomes and reduced cost of care.

  • Omnichannel retailer.?Retailers use data lakes to capture and consolidate data that's coming in from multiple touchpoints, including mobile, social, chat, word-of-mouth, and in person.

  • IoT.?Hardware sensors generate enormous amounts of semi-structured to unstructured data on the surrounding physical world. Data lakes provide a central repository for this information to live in for future analysis.

  • Digital supply chain.?Data lakes help manufacturers consolidate disparate warehousing data, including EDI systems, XML, and JSONs.

  • Sales.?Data scientists and sales engineers often build predictive models to help determine customer behavior and reduce overall churn.

Data lake vs. data warehouse

Now you know what a data lake is, why it matters, and how it's used across a variety of organizations. But what's the difference between a data lake and a data warehouse? And when is it appropriate to use one over the other?

While data lakes and?data warehouses?are similar in that they both store and process data, each have their own specialties, and therefore their own use cases. That's why it's common for an enterprise-level organization to include a data lake and a data warehouse in their analytics ecosystem. Both repositories work together to form a secure, end-to-end system for storage, processing, and faster time to insight.

A data lake captures both relational and non-relational data from a variety of sources—business applications, mobile apps, IoT devices, social media, or streaming—without having to define the structure or schema of the data until it is read. Schema-on-read ensures that any type of data can be stored in its raw form. As a result, data lakes can hold a wide variety of data types, from structured to semi-structured to unstructured, at any scale. Their flexible and scalable nature make them essential for performing complex forms of data analysis using different types of compute processing tools like?Apache Spark?or?Azure Machine Learning.

By contrast, a data warehouse is relational in nature. The structure or schema is modeled or predefined by business and product requirements that are curated, conformed, and optimized for SQL query operations. While a data lake holds data of all structure types, including raw and unprocessed data, a data warehouse stores data that has been treated and transformed with a specific purpose in mind, which can then be used to source analytic or operational reporting. This makes data warehouses ideal for producing more standardized forms of BI analysis, or for serving a business use case that has already been defined.

Data lake Data warehouse
Type Structured, semi-structured, unstructured Structured
? Relational, non-relational Relational
Schema Schema on read Schema on write
Format Raw, unfiltered Processed, vetted
Sources Big data, IoT, social media, streaming data Application, business, transactional data, batch reporting
Scalability Easy to scale at a low cost Difficult and expensive to scale
Users Data scientists, data engineers Data warehouse professionals, business analysts
Use cases Machine learning, predictive analytics, real-time analytics Core reporting, BI

Data lake vs. data lakehouse

Now you know the difference between a data lake vs. a data warehouse. But what's the difference between a data lake and a data lakehouse? And is it necessary to have both?

Despite its many advantages, a traditional data lake is not without its drawbacks. Because data lakes can accommodate all types of data from all kinds of sources, issues related to quality control, data corruption, and improper partitioning can occur. A poorly managed data lake not only tarnishes data integrity, but it can also lead to bottlenecks, slow performance, and security risks.

That's where the data lakehouse comes into play. A data lakehouse is an open standards-based storage solution that is multifaceted in nature. It can address the needs of data scientists and engineers who conduct deep data analysis and processing, as well as the needs of traditional data warehouse professionals who curate and publish data for business intelligence and reporting purposes. The beauty of the lakehouse is that each workload can seamlessly operate on top of the data lake without having to duplicate the data into another structurally predefined?database. This ensures that everyone is working on the most up-to-date data, while also reducing redundancies.

Data lakehouses address the challenges of traditional data lakes by adding a?Delta Lake storage layer?directly on top of the cloud data lake. The storage layer provides a flexible analytic architecture that can handle ACID (atomicity, consistency, isolation, and durability) transactions for data reliability, streaming integrations, and advanced features like data versioning and schema enforcement. This allows for a range of analytic activity over the lake, all without compromising core data consistency. While the necessity of a lakehouse depends on how complex your needs are, its flexibility and range make it an optimal solution for many enterprise orgs.

Data lake Data lakehouse
Type Structured, semi-structured, unstructured Structured, semi-structured, unstructured
? Relational, non-relational Relational, non-relational
Schema Schema on read Schema on read, schema on write
Format Raw, unfiltered, processed, curated Raw, unfiltered, processed, curated, delta format files
Sources Big data, IoT, social media, streaming data Big data, IoT, social media, streaming data, application, business, transactional data, batch reporting
Scalability Easy to scale at a low cost Easy to scale at a low cost
Users Data scientists Business analysts, data engineers, data scientists
Use cases Machine learning, predictive analytics Core reporting, BI, machine learning, predictive analytics

What is data lake architecture?

At its core, a data lake is a storage repository with no set architecture of its own. In order to make the most of its capabilities, it requires a wide range of tools, technologies, and compute engines that help optimize the integration, storage, and processing of data. These tools work together to create a cohesively layered architecture, one that is informed by big data and runs on top of the data lake. This architecture may also form the operating structure of a data lakehouse. Every organization has its own unique configuration, but most data lakehouse architectures feature the following:

  • Resource management and orchestration.?A resource manager enables the data lake to consistently execute tasks by allocating the right amount of data, resources, and computing power to the right places.

  • Connectors for easy access.?A variety of workflows allow users to easily access—and share—the data they need in the form that they need it in.

  • Reliable analytics.?A good analytics service should be fast, scalable, and distributed. It should also support a diverse range of workload categories across multiple languages.

  • Data classification.?Data profiling, cataloging, and archiving help organizations keep track of data content, quality, location, and history.

  • Extract, load, transform (ELT) processes.?ELT refers to the processes by which data is extracted from multiple sources and loaded into the data lake's raw zone, then cleaned and transformed after extraction so that applications may readily use it.

  • Security and support.?Data protection tools like masking, auditing, encryption, and access monitoring ensure that your data remains safe and private.

  • Governance and stewardship.?For the data lake platform to run as smoothly as possible, users should be educated on its architectural configuration, as well as best practices for data and operations management.

Frequently asked questions

  • A data lake is a centralized repository that ingests, stores, and allows for processing of large volumes of data in its original form. It can accommodate all types of data, which is then used to power big data analytics, machine learning, and other forms of intelligent action.

    Learn more about data lakes

  • Organizations across a range of industries, including retail, finance, and entertainment, use data lake platforms to store data, gather insights, and improve the overall quality of their services. Investment firms, for example, use data lakes to collect and process up-to-market data, allowing them to manage portfolio risks more efficiently.

  • Data lakes store all types of raw data, which data scientists may then use for a variety of projects. Data warehouses store cleaned and processed data, which can then be used to source analytic or operational reporting, as well as specific BI use cases.

    Explore data lakes vs. data warehouses

  • A data lakehouse combines elements of a data lake and a data warehouse to form a flexible, end-to-end solution for?data science?and business intelligence purposes.

    Learn more about data lakehouses

  • Absolutely. Major organizations across all industries rely on the massive amounts of data stored in data lakes to power intelligent action, gain insights, and grow.

    Discover the benefits of data lakes

  • Large volumes of data, including raw and unstructured data, can be difficult to manage, leading to bottlenecks, data corruption, quality control issues, and performance issues. That's why it's important to maintain good governance and stewardship practices to help you run your data lake platform smoothly.

  • Data lake architecture refers to the specific configuration of tools and technologies that helps keep data from the data lake integrated, accessible, organized, and secure.

    Explore best practices for data lake architecture

Free Account

Try Azure?Cloud Computing?services free for up to 30 days.

Pay as you go

Get started with pay-as-you-go pricing. There's no upfront commitment—cancel anytime.

flag是什么意思 西字五行属什么 什么时候开始孕吐 甲鱼喜欢吃什么 胃酸多吃什么药
什么极了 益安宁丸主治什么病 为什么做梦 脑多普勒检查什么 hsv病毒是什么意思
ssa抗体阳性说明什么 身上汗味重是什么原因 定妆用什么好 peace是什么牌子 乙型肝炎表面抗体阳性是什么意思
黄梅时节是什么季节 解压密码是什么 lee属于什么档次 西梅不能和什么一起吃 rock什么意思
天麻与什么煲汤最好onlinewuye.com 三个金读什么hcv8jop6ns0r.cn 皮炎是什么症状hcv9jop5ns8r.cn 绿加红是什么颜色hcv9jop0ns1r.cn 牛油果和什么不能一起吃huizhijixie.com
音节是指什么hcv7jop5ns6r.cn 嬲什么意思hcv9jop3ns0r.cn 青鹏软膏主要治疗什么hcv9jop1ns7r.cn 有机和无机是什么意思hcv7jop6ns3r.cn 酸菜鱼是用什么鱼hcv9jop2ns6r.cn
门良念什么hcv9jop1ns1r.cn 陈晓和赵丽颖为什么分手hcv9jop6ns7r.cn 67年的羊是什么命hcv8jop1ns7r.cn rpr阴性是什么意思1949doufunao.com 2.0是什么意思hcv7jop5ns1r.cn
长期吃避孕药有什么副作用hcv8jop8ns0r.cn 心脏做什么检查最准确hcv7jop9ns0r.cn 心电图st段改变什么意思hcv8jop4ns9r.cn 25分贝相当于什么声音0297y7.com 打耳洞去医院挂什么科hcv8jop7ns4r.cn
百度