bj是什么意思| 农历五月是什么月| 怀孕期间吃什么对胎儿发育好| 亏空是什么意思| 梦到蛇是什么意思| 陪嫁一般陪些什么东西| 尾插是什么| 功劳叶的别名叫什么| 风什么意思| prbpm是什么意思| 女人吃什么补月牙最快| 慢性咽炎吃什么| 阴道有异味买什么药| 宫保鸡丁宫保是指什么| 夭寿是什么意思| 手上的纹路代表什么| 母胎solo是什么意思| 腰痛吃什么好| 高尿酸血症是什么病| 田可以加什么偏旁| 养狗养不活是什么兆头| ppa是什么| 烧心吃什么药效果最好| 带状疱疹有什么症状| 最高位是什么位| 成何体统是什么意思| 毒龙钻什么意思| 责任是什么生肖| 300年前是什么朝代| 什么什么相什么的成语| 祛斑产品什么好| 肠易激综合征吃什么药| 勃起是什么意思| 颈动脉斑块是什么意思| 农历5月17日是什么星座| 粘纤是什么面料| 血沉高忌口什么| 厚黑学是什么意思| 高血压头晕吃什么药| 沈阳有什么好玩的地方| ur品牌属于什么档次| 梦见晒衣服是什么意思| 骨髓不造血是什么病| 什么叫做凤凰男| 人才辈出是什么意思| 悠悠岁月什么意思| 代谢慢是什么原因| 各的偏旁是什么| 熙熙攘攘是什么意思| microsd卡是什么卡| 泌乳素高是什么意思| 武的部首是什么| 木吉他什么牌子比较好| 苹果醋有什么好处| 什么生肖| 怀孕期间吃什么对胎儿发育好| 附带是什么意思| 嘴巴发苦吃什么药| 血尿是什么原因引起的男性| 奔跑吧什么时候播出| 小孩睡觉张开嘴巴是什么原因| 男的叫少爷女的叫什么| 白细胞偏高是什么意思| 睁一只眼闭一只眼是什么意思| 指甲变薄是什么原因| 小翅膀车标是什么车| 莫名其妙的心情不好是什么原因| 便秘挂什么科| 头晃动是什么病的前兆| 雌堕什么意思| 尿路感染用什么药好| 人均gdp是什么意思| 为什么排卵期会出血| 什么的琴声| 贵圈是什么意思| 肝囊肿是什么原因造成的| 劼字取名的寓意是什么| 人工流产和无痛人流有什么区别| 三点水加个真念什么| 什么炒肉好吃| 什么南瓜| 氟哌噻吨美利曲辛片治什么病| 霜花店讲了什么故事| 雨后的彩虹像什么| 痰栓是什么| 彩排是什么意思| 前列腺钙化吃什么药| 山水有相逢是什么意思| 谢霆锋什么学历| sle是什么病| 肺气肿是什么原因引起的| 高大上的意思是什么| 带环了月经推迟不来什么原因| 今年28岁属什么| 怎么知道自己缺什么五行| 狐臭用什么药| 结肠炎吃什么药效果最好| 吃什么容易放屁| obsidian什么意思| 莆田荔枝什么时候成熟| 酝酿是什么意思| 去冰和常温有什么区别| 轻贱是什么意思| 为什么纯牛奶容易爆痘| 血常规五项能检查出什么病| 白牌车是什么身份| 心烦意乱焦躁不安吃什么药| 唇系带断了有什么影响| 欣字属于五行属什么| 嘴唇淡紫色是什么原因| 胰腺炎吃什么消炎药| 子宫内膜病变有什么症状| 再障性贫血是什么病| 人大代表是什么| 脚为什么会臭| 刘备和刘邦是什么关系| 口腔溃疡是缺少什么维生素| 检查腰部挂什么科| 为什么拉绿色的屎| 什么而不什么成语| 心腹是什么意思| 脉搏90左右意味着什么| 眼睛红肿是什么原因| 浮水是什么意思| 宫颈炎是什么| 直肠脱垂有什么症状| 苏打水是什么水| 甲状腺是什么引起的原因| 减脂是什么意思| 胎儿脉络丛囊肿是什么原因引起的| 一抽一抽的打嗝叫什么| 红烧肉配什么菜好吃| 尤文氏肉瘤是什么病| 斗地主是什么意思| 什么是碱性磷酸酶高怎么回事| 养猫的人容易得什么病| tv是什么意思| 胰腺炎适合吃什么食物| 游走是什么意思| 总蛋白是什么| 命硬是什么意思| 电信诈骗是什么意思| 豌豆什么时候种最好| 回复是什么意思| 荨麻疹为什么晚上起| 低烧可以吃什么药| 放疗为什么死得更快| 鲔鱼是什么鱼| 什么时候会有孕吐反应| 先父遗传是什么意思| 什么是表达方式| 嗓子痛吃什么药好得快| 2003属什么| 腰椎ct能查出什么| 身体缺糖有什么症状| 望尘莫及什么意思| 诸位是什么意思| 什么是辛辣刺激性食物| 艾草治什么病| 尿蛋白可疑阳性是什么意思| 肾结石吃什么水果好| 控制欲强的人最怕什么| police是什么品牌| 多走路有什么好处| 肺结节增殖灶什么意思| 血糖高的人早餐吃什么好| 肝不好吃什么| 省内流量是什么意思| 四月二十六是什么星座| aah是什么意思| 五音是什么意思| 骏字五行属什么| 一个虫一个离念什么| 七月十日是什么星座| 肾素活性高是什么原因| 例假颜色发黑是什么原因| 伤风感冒吃什么药| 玻璃瓶属于什么垃圾| 参军是什么官职| 植物园有什么植物| 西布曲明是什么| 养殖有什么好项目| 水钠潴留什么意思| 来大姨妈喝什么最好| 西昌火把节是什么时候| 孕妇为什么要左侧睡不能右侧睡| 急性扁桃体化脓是什么原因引起的| 一个月来两次月经是什么原因| 全身发黄是什么原因| 新股配号数量是什么意思| 母乳是什么味| 荨麻疹吃什么药效果好| 今天是什么纪念日| 上午九点是什么时辰| 孕妇做无创是检查什么| 体育总局局长什么级别| 中央电视台台长什么级别| 44岁月经量少是什么原因| fish是什么意思| 画龙点睛指什么生肖| 湿热吃什么食物好| 女人嘴唇发紫是什么病| 孕期什么时候补钙| 适合什么发型| 脑回路是什么意思| 心功能不全是什么意思| 为什么会有口腔溃疡| 得水痘不能吃什么| 口蜜腹剑是什么意思| 九天揽月是什么意思| 维生素c高是什么原因| 吃什么东西对胃好| 人得了猫藓用什么药膏| 银行降息意味着什么| 牙疼吃什么消炎药| 仪字五行属什么| 45岁属什么| lava是什么意思| 保泰松是什么药| 月经后期是什么意思| 环切手术是什么| rinnai是什么品牌| 气血不足是什么意思| 什么是非萎缩性胃炎| 羊胡子疮用什么药膏| 手抓饼里面夹什么好吃| 第三产业是什么| 淋巴组织增生是什么意思| 喜欢一个人会有什么表现| gm是什么牌子| 上腹疼是什么原因| 万宝龙皮带算什么档次| 日进斗金是什么意思| 喜欢出汗是什么原因| 白敬亭原名叫什么| 葬花是什么意思| 血小板比积偏高是什么意思| 内痔疮用什么药治最好效果最快| 无疾而终是什么意思| 阿苯达唑片是什么药| 三月十九是什么星座| 什么叫手足口病| 安全期是什么| 学生吃什么补脑子增强记忆力最快| 庸人自扰什么意思| 流黄鼻涕是什么原因| 夸奖的近义词是什么| 活泼的近义词是什么| 喝什么对肾好| 体外射精是什么| 除夕是什么意思| 口了又一是什么字| ena是什么检查项目| 妇联是干什么的| 清明为什么插柳枝| 一个山一个空念什么| 四不像是指什么动物| 爸爸的姐姐的儿子叫什么| 石字旁有什么字| 为什么一喝牛奶就拉肚子| cordura是什么面料| 喝酒喝多了有什么危害| 藏红花有什么功效| 拔草是什么意思| 百度
This is the Trace Id: 3b254a0e5ff1d099a32681fb6b0f09f7
Skip to main content
Azure

绿地北京海珀TOP系产品发布 填大兴高端住宅空白

Learn how retrieval-augmented generation (RAG) technology improves the accuracy and relevance of responses generated by large language models (LLMs).
百度 培训班由机关党委常务副书记李霄明主持。

RAG boosts AI accuracy by integrating external knowledge, ensuring up-to-date, relevant responses

By enhancing cloud computing capabilities and influencing the advancement of AI, RAG helps improve the accuracy and relevance of AI-generated responses, making AI systems more reliable and effective across various applications.

Key takeaways

  • The history and evolution of RAG in AI reflects a broader trend towards more intelligent and context-aware systems that can effectively combine vast amounts of information with sophisticated generation capabilities.
  • RAG architecture enables AI systems to produce more informed and reliable content by grounding pre-trained generation in retrieved external knowledge.
    ?
  • The benefits of RAG make it a powerful technique for creating AI systems that are more accurate, reliable, and versatile, with broad applications across domains, industries and tasks.
    ?
  • Developers use RAG to build AI systems that can generate content grounded in accurate information, leading to more reliable, context-aware, and user-centric applications.

  • RAG systems combine retrieval and generation, making it a powerful tool for a wide range of applications, industries, and use cases.

  • As RAG models continue to advance, they’re expected to play a crucial role in various applications, from customer service to research and content creation.

  • RAG is set to play a crucial role in the future of LLMs by enhancing the integration of retrieval and generation processes.

RAG: Mechanics, history, and impact

How RAG works

Retrieval-augmented generation (RAG) is an AI framework that combines two techniques; First, it retrieves relevant information from external sources, such as databases, documents, or the web. Once this information is gathered, it is used to inform and enhance the generation of responses. This approach capitalizes on the strengths of both retrieval and generation techniques, ensuring that the responses are accurate, relevant, and contextually enriched by the most up-to-date and specific information available. This dual capability allows RAG systems to produce more informed and nuanced outputs than purely generative models.

The history of RAG

RAG is rooted in the early systems of basic information retrieval. As generative AI technologies rapidly advanced and generative language models like GPT-2 and BERT emerged, the need for more accurate and relevant responses grew. ? In 2020, RAG architecture was introduced, marking a significant advancement. By using machine learning to combine retriever and generator modules—integrating the internal knowledge base of the LLM with external sources of knowledge—RAGs were able to produce more accurate, up-to-date, coherent, and contextually accurate text. ? With deep learning at their core, RAG models can be trained end-to-end, enabling outputs that optimize responses, improving the quality of generated content as the model learns to retrieve the most reliable and contextually useful information.

The importance of RAG to AI

RAG plays a crucial role in advancing the capabilities of AI, reflecting a trend towards more intelligent and context-aware systems that can effectively combine vast amounts of information with sophisticated generation capabilities. Here are key reasons why RAG is foundational to AI:

?
  • Enhanced accuracy: By integrating external knowledge sources, RAG significantly improves the accuracy and relevance of responses generated by LLMs.
  • Contextual relevance: RAG allows AI systems to generate responses that are more contextually appropriate by retrieving specific information related to the request.

  • Cost-effectiveness: Implementing RAG is more efficient than continuously retraining LLMs with new data.?

  • Transparency: By providing sources for the information used in responses, RAG enhances credibility and trust.
    ?
  • Versatility: RAG can be applied across various sectors, like healthcare, education, and financial sectors, and for purposes such as customer service, research, and content creation.

  • Improved experience: By delivering more accurate and relevant responses, RAG technology leads to more satisfying and productive interactions for users.
?

RAG architecture

The architecture of RAG systems is a combination of two main modules plus a fusing mechanism that work together to produce accurate and contextually relevant outputs. RAG modules can be trained end-to-end, allowing the algorithm to optimize retrieval and generation jointly, resulting in a more informed and reliable result.

Here’s how RAG architecture works:

The retriever module searches through a large data set to find the most relevant pieces of information based on the query.

After retrieval, the generator module uses the retrieved information as additional context to generate a coherent and relevant response. Typically, generator modules are a pre-trained language model like generative pre-trained transformer (GPT) or bidirectional and auto-regressive transformers (BART) that has been fine-tuned to generate text based on the input and the retrieved information.

The fusion mechanism ensures that the information retrieved is effectively combined in the generative process. This interaction between the modules enables RAG systems to produce more informed and reliable content by grounding generation in retrieved knowledge.?

The benefits of RAG

Powerful architecture to improve AI

Developers use RAG architecture to create AI systems that are more accurate, reliable, and versatile, with broad applications across various industries and tasks. The benefits of RAG are:
? ?
  • Improved accuracy, relevance, and contextual precision: By retrieving relevant documents or data, RAG ensures that the generated output is grounded in factual and pertinent information, improving the overall accuracy and relevance of responses.

  • Reduced hallucinations through fact-based generation: RAG reduces the likelihood of hallucinations—generating plausible but incorrect information—basing the generative model’s output on actual retrieved content, leading to more trustworthy results.

  • Enhanced performance in open-domain tasks with broad knowledge access: RAG excels in open-domain question answering and similar tasks by efficiently retrieving information from vast and diverse sources, enabling it to handle a wide range of topics with depth and breadth.

  • Scalability and capacity to handle large knowledge bases: RAG can efficiently search and retrieve relevant information from massive datasets, making it scalable and suitable for applications requiring extensive knowledge access. NoSQL databases allow RAG models to leverage vast amounts of data for generating contextually enriched responses.

  • Customization and domain-specific applications: RAG models are adaptable and can be fine-tuned for specific domains, allowing developers to create specialized AI systems tailored to particular industries or tasks, such as legal advice, medical diagnostics, or financial analysis.

  • Interactive and adaptive learning: Through user-centric adaptation, RAG systems can learn from user interactions, retrieving more relevant information over time and adapting their responses to better meet user needs, improving user experience and engagement.

  • Versatility and multi-modal integration: RAG can be extended to work with multi-modal data (text, images, structured data), enhancing the richness and diversity of the information used in generation and broadening the applications of the model.

  • Informed writing for efficient content creation: RAG provides a powerful tool by retrieving relevant facts and references, ensuring that generated content is not only creative but also accurate and well-informed.

Types of RAG systems

Versatility across applications

Retrieval-augmented generation is an adaptive, versatile AI architecture with a wide range of use cases across domains and industries. Here are? key applications of RAG:
?
  • Open-domain question answering (ODQA)?
    Use case:
    RAG is highly effective in ODQA systems, where users can ask questions on virtually any topic.
    Example: Customer support chatbots use RAG to provide accurate answers by retrieving information from large knowledge bases or FAQs.

  • Domain-specific specialized queries?
    Use case:
    For the legal industry, RAG can assist in analyzing and generating summaries of case law, precedents, and statues by retrieving relevant documents.
    Example: A legal assistant tool retrieves and summarizes documents for specific purposes.

  • Content summarization
    Use case:
    RAG can assist in generating high-quality content, like virtual assistant meeting notes, or summaries of articles, reports, or blog posts, by retrieving relevant information and integrating it into the generated text.
    Example: A journalist uses RAG to generate summaries of recent news articles by pulling in key details from various sources.

  • Personalized recommendations
    Use case:
    RAG can enhance recommendation systems by retrieving user-specific information and generating personalized suggestions.
    Example: An e-commerce platform uses RAG to recommend products based on a user's browsing history and preferences, offering explanations generated from relevant product reviews or descriptions.

  • Complex scenario analysis and content creation?
    Use case:
    A hybrid RAG model can be used to generate and synthesize detailed reports or analyses by retrieving relevant data, documents, or news from multiple complex sources.
    Example: A financial analysis tool generates investment projections, analyses, or reports by retrieving and summarizing recent market trends, historical financial data, stock performance, expert commentary, and economic indicators.

  • Research information and synthesis
    Use Case:
    Researchers can use RAG to retrieve and synthesize information from academic papers, reports, or databases, facilitating reviews and research projects.
    Example: An academic tool generates summaries of relevant research papers by pulling in key findings from various studies.

  • Multi-lingual and cross-lingual applications
    Use Case:
    RAG can be deployed in multi-lingual environments to retrieve information in different languages and generate cross-lingual content.
    Example: A translation tool translates text while also retrieving culturally relevant information to ensure the translation is contextually appropriate.

RAG will power tomorrow’s AI

Boosting precision in AI output

Retrieval-augmented generation is set to play a crucial role in the future of LLMs by enhancing the integration of retrieval and generation processes. Expected advancements in this area will lead to more seamless and sophisticated fusion of these components, enabling LLMs to deliver highly accurate and contextually relevant outputs across a broader range of applications and industries.

As RAG continues to evolve, we can anticipate its adoption in new domains such as personalized education, where it can tailor learning experiences based on individual needs, and advanced research tools, offering precise and comprehensive information retrieval for complex inquiries.

Addressing current limitations, such as improving retrieval accuracy and reducing biases, will be key to maximizing the potential of RAG systems. Future iterations of RAG are likely to feature more interactive and context-aware systems, enhancing user experiences by dynamically adapting to user inputs.

Additionally, the development of multimodal RAG models, which use computer vision to integrate text, images, and other data types, will expand and open even more possibilities, making LLMs more versatile and powerful than ever.
FAQ

Frequently asked questions

  • Retrieval-augmented generation (RAG) is an AI technique that combines a retrieval model with a generative model. It retrieves related information from a database or document set and uses it to generate more accurate and contextually relevant responses. This approach enhances the quality of AI-generated text by grounding it in real-world data, making it particularly useful for tasks like answering questions, summarizing, and creating content.
  • RAG improves AI-generated content by incorporating external data. It retrieves relevant information from a database and then uses that data to generate more accurate and context-aware responses. This process ensures that the AI system’s output is better informed and more reliable.
  • RAG combines a large language model (LLM) with a retrieval mechanism. While an LLM generates text based on pre-trained data, RAG enhances this by retrieving relevant information from external sources in real time, improving accuracy and relevance. Essentially, LLM relies on learned patterns, while RAG actively pulls in up-to-date information to inform its responses.
盆腔炎吃什么消炎药效果好 1点到3点是什么时辰 店铺开业送什么礼物好 唐僧最后成了什么佛 海马体是什么意思
低温是什么原因引起的 月经不调去医院要做什么检查 动脉硬化是什么症状 纪梵希属于什么档次 什么食物补气血
什么人容易怀葡萄胎 维生素c对身体有什么好处 2001年属什么 卖关子是什么意思 上四休二是什么意思
七月三号是什么日子 杜仲泡水喝有什么功效 煮毛豆放什么调料 肚子硬硬的是什么原因 关节退变什么意思
东北方向五行属什么hcv8jop6ns8r.cn zn是什么元素hcv8jop1ns4r.cn 旬空是什么意思hcv8jop6ns2r.cn 扬是什么生肖hcv9jop1ns6r.cn 太爷爷的爸爸叫什么hcv7jop6ns5r.cn
什么清肠茶好0297y7.com 硬膜囊前缘受压是什么意思hcv8jop0ns7r.cn 怀孕生化了是什么原因hcv8jop7ns9r.cn 小混混是什么意思hcv8jop1ns1r.cn 胎盘成熟度2级是什么意思hcv8jop1ns7r.cn
晒太阳对身体有什么好处hcv8jop2ns6r.cn 晚上五点是什么时辰hcv8jop5ns1r.cn 感触什么意思yanzhenzixun.com 谨言慎行下一句是什么hcv8jop7ns7r.cn 莫名是什么意思zhongyiyatai.com
轴距是什么意思hcv7jop9ns3r.cn 血糖高适合吃什么蔬菜hcv7jop4ns8r.cn 女人梦见桃子预示什么cj623037.com 什么是双高hcv7jop9ns7r.cn 凝血高是什么原因hcv9jop4ns0r.cn
百度